Tangible interaction: Benefits

Celine.Coutrix@imag.fr

Tangible User Interfaces What are they good for?

Tangible User Interfaces What are they good for?

 Interaction embodied in the physical world of the user: Physical User & Physical Interface

• Performance:

Passive haptic feedback

Embodied interaction

How closely tied is the input focus to the output focus?

To what extent does the user think of the **states of the system** as being **"inside" the object** they are manipulating?

To what extent does the user think of the **state of computation** as being **embodied within a particular physical housing**?

Distant embodiment

Object (prop) to interact at a distance with GUI

Nearby embodiment

Tangible and overlaid projection

Example: URP

Full embodiment

Rear-projection and optical fibers

Example: Ficon

Full embodiment

Printed Optics

Fishkin's metaphors

Analogy between the system effect of a user action to the real-world effect of similar actions

No metaphor

No analogy between action and result

E.g., command-line UI, clock in URP

Noun

Shape-related

"an <X> in the system is like an <X> in the real world"

E.g., dictionary (http://dl.acm.org/citation.cfm? doid=302979.303111)

Verb

Motion-related

"<X>-ing in our system is like <X>-ing in the real world"

E.g., Wii tennis

Noun & Verb

"<X>-ing an <A> in our system is like <X>-ing something <A>-ish in the real world"

E.g., eraser in Digital Desk, building in URP

Full

In user's mind, there is no system

E.g., Illuminating Clay

Tangible User Interfaces What are they good for?

- Interaction embodied in the physical world of the user: Physical User & Physical Interface
- Performance:

Passive haptic feedback

Tangible User Interfaces: What are they good for?

Several experiments demonstrated their benefits

- Time-multiplexed vs. Space-multiplexed input: inter-device transaction phases
- Specialized vs. Generic form-factor

• Time-multiplexed vs. Space-multiplexed input: inter-device transaction phases

GUI	TUI
Acquire physical device	Acquire physical device
Acquire logical device	
I Manipulate logical device	 Manipulate logical device

https://www.youtube.com/watch?v=-QJ7Hr8MYRE

Task: continuously track four targets moving randomly on the screen (compound tasks)

- Rotor: position and rotation
- Brick: position and rotation
- Strechable square: position, rotation and scale
- Ruler: position, rotation and scale

Space-multiplexed Specialized Space-multiplexed Generic Time-multiplexed

Does the **physical switching** cost more than the **logical switching** between tools?

Space-multiplexed Specialized Space-multiplexed Generic Time-multiplexed

Does the **physical switching** cost more than the **logical switching** between tools?

Is the **specialized** input useful?

Space-multiplexed Specialized Space-multiplexed Generic Time-multiplexed

Space-multiplexed Specialized **performs best**

Space-multiplexed Generic performs better than Time-multiplexed but worst than Specialized

Time-multiplexed

performs worst

- Consistent across the 4 devices
- (Score based on root mean square errors of all dimensions (position, orientation and scale if applicable) of all devices)

Users spend more time switching between tools with time-multiplexed UI rather than with space-multiplexed UI

- 1. Space-multiplexed > Time-multiplexed input:
 - Persistance of attachement between physical and logical (software, graphical) controllers
 - Parallel 2-handed vs.
 Sequential 1-handed interaction
- 2. Specialized vs. Generic form-factor
 - Visual and tactile reminder

Tangible User Interfaces: What are they good for?

Several experiments demonstrated their benefits

What about multitouch input?

What about multitouch input?

also space-multiplexed

Two experiments

Acquisition

Manipulation

Manipulation

Assumes users already acquired the control widget

Task: match position+orientation+cursor of blue object manipulating yellow object as quickly as possible

Multitouch

Mouse+Puck

(all conditions sensed through multitouch table)

Task: match position+orientation+cursor of blue object manipulating yellow object as quickly as possible

±5px

Mouse+Puck

Multitouch

Tangible

Measures: Time to complete matching task Subjective comfort Subjective ease of use

Mouse+Puck

Multitouch

Tangible

+ Little difference in comfort and ease of use

A participant: « better degree of control with tangibles, especially when rotating »

Manipulation

Two experiments

Acquisition

Manipulation

Acquisition

Task: match position+orientation+cursor of blue objects manipulating yellow objects at all times

Mouse+Puck

Multitouch

(all conditions sensed through multitouch table)

Task: match position+orientation+cursor of blue objects manipulating yellow objects at all times

 \Rightarrow move between widgets \Rightarrow many (re)acquisitions

time

Measures: root-mean-square errors of all dimensions (position, orientation and scale or cursor position if applicable) of all devices

+ subjective preference, confort and ease of use

Overall

Multitouch Mouse+Puck Tangible

+ Little difference in preference, comfort and ease of use

Multitouch Mouse+Puck Tangible

Same pattern for multitouch and tangible

multitouch ≠ tangible

number of

contact points

multitouch ≠ tangible

multitouch: number of contact points

multitouch:

number of contact points decrease \Rightarrow more accurate

tangible:

number of contact points increase \Rightarrow more accurate

+ greater variability within and between participants

Several experiments demonstrated their benefits

Tangible User Interfaces: Benefit for distant interaction

- Techniques: Touch vs. Tangible slider
- Tasks: Tracking vs. Tracking + additional tapping

Tangible User Interfaces: Benefit for distant interaction

Comparing touch and tangible interaction

Several experiments demonstrated their benefits

Tasks: set horizontal position of cursor

Tasks: set horizontal position of cursor

- Press green button; Acquisition of required tool; Move towards and stay in target for 1 second;
- 2. Move cursor back and forth 5 times between two targets

	Touch	Overlay	Tangible
Slider			
Single-turn dial			
Multi-turn dial (Task 2 only: with CD gain 3x)			

• Task 1: acquisition and movement

	Touch	Overlay	Tangible
Slider		2	
Single-turn dial		-	

• Task 2: repetitive task

	Touch	Overlay	Tangible
Slider			
Single-turn dial		7	
Multi-turn dial (with CD gain 3x)			

Task 1: acquisition and movement

Task 1: acquisition and movement

No difference found for sliders: because of manipulation problem with tangible sliders: *"participants complained that they were wobbly* and required some pressure"

Several experiments demonstrated their benefits

2D

Tangible

Tasks

- Find and indicate a range of values
- Find and sort values
- Find and compare values

Measures

- Time
- Error rate

Users are:

- Around 20% faster with Tangible than with 3D
- Around 40% faster with 2D than with Tangible
 - however, effect weaker if the task cannot be solved by one 2D cut

Among possible explanation: Touch & Proprioception

3D mono/stereo	Tangible
sequential: rotate; mark; rotate; etc.	parallel: rotate // mark*
occluded bars impossible to reach	occluded bars reachable
with the mouse cursor	with the fingers
mouse cursor	proprioception compensate for
does not occlude the bars	fingers that occlude the bars

Proprioception

Definition:

- Perception of our own body
- Sense of the relative position of our limbs through our skin, muscle, joints and inner ear

Tangible User Interfaces: What are they good for? D 3D Mono 3D Stereo Tangible

Among possible explanation: Direct rotation

3D mono/stereo	Tangible
"Indirect" rotation (mapped to x and y axis of mouse)	"Direct" rotation

Tangible User Interfaces: What are they good for? D 3D Mono 3D Stereo Tangible

Among possible explanation: Visual Realism

	3D mono/stereo	Tangible
Resolution	1920 x 1080 px for 23"	0.5mm
Stereoscopic cues (Images L and R different)	no / yes	yes
Accomodation cues	at screen distance	at any distance
Shading and shadows	computer-generated	natural
Texture	none	spray paint imperfections

Tangible User Interfaces: What are they good for? D 3D Mono 3D Stereo Tangible

Impact of all possible explanations?

- Touch & Proprioception?
- Direct rotation?
- Visual Realism?
Tangible User Interfaces: What are they good for?

3D Mono & Indirect mouse rotation & No bar marking

Tangible **Direct rotation** & Touch

Direct rotation

Touch & Proprioception

3D Mono & Prop-based direct rotation & No bar marking

Tangible Direct rotation &

No touch

Visual realism

Tangibles User Interfaces: What are they good for?

- Direct rotation: very little faster compared to indirect rotation
- Visual Realism: around 13% faster compared to onscreen
- Touch & Proprioception: around 15% faster than no touch
 - unload cognitive effort into a physical action